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Community assembly models, usually constructed for food webs,
are an important component of our understanding of how ecol-
ogical communities are formed. However, models for mutualistic
community assembly are still needed, especially because these
communities are experiencing significant anthropogenic distur-
bances that affect their biodiversity. Here, we present a unique
network model that simulates the colonization and extinction pro-
cess of mutualistic community assembly. We generate regional
source pools of species interaction networks on the basis of sta-
tistical properties reported in the literature. We develop a dynamic
synchronous Boolean framework to simulate, with few free pa-
rameters, the dynamics of new mutualistic community formation
from the regional source pool. This approach allows us to deter-
ministically map out every possible trajectory of community for-
mation. This level of detail is rarely observed in other analytic
approaches and allows for thorough analysis of the dynamical
properties of community formation. As for food web assembly,
we find that the number of stable communities is quite low, and
the composition of the source pool influences the abundance and
nature of community outcomes. However, in contrast to food web
assembly, stable mutualistic communities form rapidly. Small com-
munities with minor fluctuations in species presence/absence (self-
similar limit cycles) are the most common community outcome.
The unique application of this Boolean network approach to the
study of mutualistic community assembly offers a great opportu-
nity to improve our understanding of these critical communities.
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The development of communities has been, and continues to
be, a major research topic in ecology. Because of its dynamic

nature, its unpredictability, and the timescales involved, most
studies of the assembly process are theoretical. Existing models
primarily focus on the assembly of food webs. Most of them
explore assembly in the context of ecological succession (but see,
e.g., refs. 1 and 2), with either finite (e.g., ref. 3) or infinite (e.g.,
ref. 4) source pools of candidate species. Models of colonizations
and extinctions are generally based on Lotka–Volterra predator–
prey dynamics (e.g., refs. 3 and 5, but see ref. 6). Many methods
have been developed to determine when equilibrium (maximum
biodiversity) is attained, including biomass thresholds (e.g., ref.
7), dynamical constraints (e.g., permanence; ref. 3), and re-
sistance to invasion (e.g., ref. 4).
We lack similar models for mutualistic community assembly.

Plant–pollinator mutualisms are of particular concern, given the
growing documentation of changes in pollinator communities
worldwide (8–10). Models of food web assembly have yielded
many insights; for example, food web assembly models suggest
that communities assembled from the same potential species
pool may converge (e.g., ref. 4) or diverge into alternative stable
states (e.g., ref. 11). Early composition and conditions, as well as
order of species introduction, may affect future composition (12,
13) and thereby affect the resilience of a system to invasion (14).
Mutualistic communities may also follow these patterns of food
web assembly; however, given the nature of mutualistic inter-
actions, key differences will likely come to light. For instance, the
smallest possible plant–pollinator community must include both

a plant and a pollinator, in contrast to the smallest food web
possible (i.e., one plant).
Much of the difficulty in synthesizing the study of community

assembly lies with the challenge of identifying organizing princi-
ples that accommodate the wide variation in complex, natural
systems. Although food web assembly models can be based on
Lotka–Volterra predator–prey population dynamics, we cannot
easily model the mutualistic interdependence of multiple species
in a similar fashion. Adapting Lotka–Volterra population models
for mutualism yields dynamics that are unrealistic, are destabi-
lizing, and/or feature infinite growth (15–17), unless other inter-
actions (e.g., refs. 17–22) or functional responses (23) are present.
A potentially unifying approach to studying community assembly
is network theory. Networks are useful representations of com-
plex systems (e.g., refs. 24–26) and have been instrumental in the
development of recent community assembly models for food webs
(4, 6, 27–30). In this work, we build on the growing literature on
mutualistic network models (18, 31–38) by introducing a dynamic
Boolean network framework to simulate the process of repeated
colonizations and extinctions inherent in the real process of
community assembly.
A plant–pollinator community can be represented by a bipartite

network, with the plant and pollinator species as nodes and their
interactions as edges (39–41).We show such an interaction network
for a highly simplified community in Fig. 1. Unlike most inter-
actions in a food web, interactions in a mutualistic community are
bidirectional (18, 42, 43). As plant species colonize or become ex-
tinct from the patch, pollinator species that are dependent upon
them may also be able to colonize or be driven extinct. However,
not all plant–pollinator interactions may result in equal benefit for
both partners (e.g., ref. 44). In our model, the benefit from an in-
teraction, and therefore the effect of the interaction on coloniza-
tion and extinction, depends upon empirically based values of the
length of the pollinator’s proboscis compared with the plant’s
nectar depth. As a new ecological community is colonized by spe-
cies fromall of the surrounding communities, we simulate assembly
via (a) repeated invasion attempts fromfinite, regional source pools
and (b) interactions between species that have successfully invaded.
Thus, although the amalgamated source pool does not represent
a stable community in and of itself, it may give rise to new, stable
communities of species. We simplify population dynamics by using
a synchronous Boolean network framework (45, 46) and consider
the colonization and extinction of a species as changes to its pres-
ence and absence. A similarmethodwas previously used to develop
a simple model of food web assembly (6) and enables us to map all
possible successional trajectories (4, 6) in a separate network that
we refer to as the state transition network (Fig. 2). In this frame-
work, stable communities (the “attractors” of the state transition
network) are either steady states (SSs), wherein species do not
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change from present to absent or vice versa as time advances, or
limit cycles (LCs), wherein the presence and absence of some
species vary cyclically and predictably. In the context of our Bool-
ean framework, LCs indicate that some of the species fluctuate
across a population threshold. Realistic LCs (unlike the example
depicted in Fig. 2) should possess states that are nearly identical.
Such LCs can be considered very similar biologically to SSs.
We simulated the process of community assembly from

ensembles of regional source pools (i.e., interaction networks)
with a wide range in size (species richness) and ratio of plant to
pollinator species. We first consider the overall topology of the
state transition networks in each ensemble and then discuss the
properties of their attractors. Although the effect of positive
interactions in existing communities has been explored (47), the
relative influence of a positive interaction compared with a nega-
tive interaction during community assembly is poorly understood,
and thus we fixed the weight of a negative interaction and re-
peated our analysis for a range of positive edge weights (PEWs).

Results
We compare a property across ensembles by reporting mean
values whenever doing so does not constitute an oversimpli-
fication of the behavior. Varying the plant–pollinator ratio from
1 in our simulations (Materials and Methods) typically had little
effect on the resulting behavior, so for simplicity we report on
ensembles where the ratio is equal to 1, except where noted. We
did not consider interaction networks where the ratio is highly
skewed because they are rarely seen in nature (48).

State Transition Network Topology. The total number of attractors
(distinct community outcomes) grows with the size of the source
pool; increasing the PEW beyond 1 results in a significant in-
crease in the rate of this growth (Fig. 3). Nevertheless, because
the total number of states grows much more rapidly than the
number of attractors, the fraction of states that exist in an
attractor becomes vanishingly small as the number of species
increases. The number of LCs grows with source pool size,
whereas the number of SSs is relatively constant. The dominance
of LCs is expected in light of the fact that the probability that an
attractor will have no fluctuation in any species decreases as the
species pool increases.
The states that lead to a particular attractor make up its basin

of attraction; the size of an attractor’s basin of attraction indi-
cates the probability that a randomly selected starting state will
eventually lead to that attractor. We find that the net size of the
SS and LC basins of attraction scales with their relative abun-
dances (Fig. 4). The existence of multiple basins of attraction
indicates that outcomes are conditional on successional history.
In addition, the average path length (i.e., the number of time
steps required to reach an attractor) grows very slowly compared
with the size of the state space (Fig. 5). Larger PEWs lead to
more LCs and slightly shorter average path lengths.

Properties of Attractors. Most LCs contain few states (Fig. 3);
moreover, very few species change from present to absent or vice
versa within a LC (Fig. 6). For instance, the LC 1101 ↔ 1111 has
two states; three of the four species have the same expression
level in both states; we refer to this as 75% similar. Thus, despite
the fact that the LCs greatly outnumber the SSs in large net-
works, most behave much like SSs, with only a few species
fluctuating about the presence/absence threshold.
The fraction of species that is present in the attractors is typi-

cally low (Fig. 7): The average fraction is<25% for SSs and<30%
for LCs. Increasing the PEW raises the percentage: As the rela-
tive strength of a negative edge is weakened, the tendency of
species to be present is increased, and end-point communities can
become larger. The abundance of species is inflated for LCs in
small networks due to inherent complexity requirements: Some
species are required to fluctuate in a LC, and in a small network,
only a few species fluctuating increases the reported value sig-
nificantly. The abundance of plants and pollinators is roughly
equivalent except when the source pool itself contains unequal
quantities (Fig. 8).

Fig. 1. A simple example plant–pollinator interaction network consisting of
three plant species and two pollinator species. A pointed (flat) tip indicates
a positive (negative) interaction. Pollinator 2 is a generalist in that it success-
fully pollinates all three plants, although it cannot feed from plant 1, as its
proboscis length (λ) is significantly shorter than the nectar depth (λ) of plant 1.

Fig. 2. The state transition network that corresponds to the interaction network shown in Fig. 1. Dynamically, the presence or absence of a species at time
tþ 1 is determined by the species that target it and are present at time t. Here, the effect of a negative edge is equal to that of a positive edge, and a species
must have more active positive incoming edges than negative at time t to be present at time t + 1 (Materials and Methods). The 32 possible community states
are identified with a binary number (present = 1, absent = 0) where the values correspond to (from left to right) plant 1, 2, 3 and pollinator 1, 2. Edges indicate
the succession of the system’s states in the absence of outside influence. The system admits two steady states, 00000 (presence of no species) and 11101
(absence only of pollinator 1), and one cycle of length 2, 11100 ↔ 00001 (the system oscillates between all plants and no pollinators and only pollinator 2).
Note that due to the artificial nature of this example interaction network, this limit cycle is highly unrealistic, and such limit cycles are extremely uncommon in
larger, more realistic interaction networks.
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Discussion
The complex process by which mutualistic communities are
formed is not well understood, despite the significant corpus of
literature that exists on the topic (reviewed in refs. 49–53). In this
report, we used a network theory approach with a synchronous
Boolean framework to model the formation of plant–pollinator
communities. Our results give insight into the dynamics of
community formation while simultaneously eliminating the need
for extensive parameter estimation.
In our model, communities are formed by constant invasion

attempts from species in neighboring communities. By assigning
interactions according to ecologically realistic properties, we
ensure our networks are statistically similar to real networks. A
stable community (attractor) is formed when the system goes to
(a) a SS, where the composition of species ceases to change as
time advances, or (b) a LC, where the composition of species
changes periodically and predictably. Whether a species suc-
cessfully invades in the new community depends upon the spe-
cies already present; e.g., a plant species will not survive if it
cannot be pollinated. Because an interaction may be beneficial
for one participating species but detrimental for the other, we
consider each as a pair of directed interactions. In this report, we
required a significant degree of matching between the plant
nectar depth and pollinator proboscis length for both inter-

actions to be considered positive. As a result, only 7.7% of in-
teraction pairs (on average) are mutually beneficial in our
simulated networks. Surprisingly, stable community formation is
possible despite this relatively low value.
Our simulations indicate that plant–pollinator communities

assemble quickly and that the species richness that is attained is
relatively small compared with the species richness of the regional
source pool. Communities rapidly advance to an attractor even
though the majority of the possible community compositions do
not exist in an attractor. Relatively few (<30%) species from the
source pool exist in the attractors, and LCs are more prolific than
SSs for all but the smallest networks. Most LCs are relatively
simple in that they contain few (typically less than five) states and
the states themselves exhibit little fluctuation (<15% for large
networks). LCs with many constituent states that vary wildly in

A B C D

Fig. 3. The average number of attractors for ensembles of 1,000 randomly generated networks with equal numbers of plants and pollinators. A–D corre-
spond to positive edge weights of 1–4, respectively. Most limit cycles consist of two, three, or four states. Their abundance increases with network size,
whereas the number of steady states is comparatively constant.

Fig. 4. A randomly chosen starting state will lead to a steady state more
often than a limit cycle for small networks, but the converse is true for larger
networks. This behavior corresponds to the relative abundance of steady
states (limit cycles) for small (large) networks (Fig. 3).

Fig. 5. The average number of time steps required to reach an attractor
grows with network size, albeit at a much slower rate than the total size of
the state space [the average path length lies in the range (2, 8), whereas the
number of states ranges from 210 to 2100]. If the positive edge weight is
larger, the greater abundance of attractors (Fig. 3) results in a wider but
shallower distribution of transitional states, which leads to a smaller average
path length.
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their species compositions are rarely observed. Our results sug-
gest that LCs are a natural extension of complex community dy-
namics, as has been shown with food web models (54, 55).
Our model suggests that for plant–pollinator communities, the

properties of the regional source pool are important for the as-
sembly process, as found by food web models (27, 56, 57). More
stable communities are possible when more species are available
to colonize from the source pool, but there is a diminishing return
because the total number of communities increases more rapidly.

The duration of assembly also increases with source pool size,
although the process generally takes few steps (in contrast to food
web assembly model communities, which typically form over
much longer periods). In addition, the ratio of plants to polli-
nators in the stable communities reflects the ratio present in the
source pool. Finally, although species richness in the attractors is
low in comparison with that of their source pools, larger stable
communities are possible with increased source pool size.
Higher PEWs make it easier for species to invade and survive

in the community and lead to an increase in attractor abundance
and complexity. It is reasonable to assume that negative inter-
actions are less significant than positive interactions; e.g., a pol-
linator wasting some time at a plant where it cannot feed does
not completely negate feeding elsewhere. Our model results
were similar for higher PEWs, compared with when the weights
were equal. The consistency in behavior for PEWs >1 suggests
that the range of PEWs is less important than the minimum
value. Although we use a universal threshold for presence/ab-
sence in this study, assigning unique threshold value(s) for each
species would be a straightforward extension (e.g., plant A is
hardier than plant B and can persist more easily).
As in some food web assembly models (11), we find that both

convergence and divergence of successional trajectories can oc-
cur, although convergence of mutualistic community trajectories
is more likely to result from assembling from small, rather than
large source pools. Because of the existence of divergent tra-
jectories (multiple basins of attraction), we confirm the impor-
tance of successional history as identified for food webs (6, 12).
Interestingly, our model shows mutualistic assembly to be rapid,
unlike other network-based community assembly models, which
require very long duration to reach the end point (4, 6).
It is possible to use the framework that we described here to

explore how interaction complexity develops and how specific
properties, such as species specialization, contribute to assembly.
Because generalists can in theory support many interactions, we
would expect them to be very important in the assembly process.
Additionally, there are transient species in every species pool that
do not participate in any stable communities. We expect these
species to typically be specialists, rather than generalists. How-
ever, experience with other types of biological networks indicates
that the number of interactions alone is not a perfect indicator of
a node’s criticality for the system’s stability (58–60).
In addition, our framework can be applied to examine issues

related to pollinator conservation and management, such as the
effect of pollinator loss and the introduction or eradication
of invasive species. For example, we can investigate the ability of

Fig. 6. The average normalized agreement in the present/absent state of
each species for the states in a limit cycle. The agreement is determined by
computing the average of all pairwise combinations of the states in a limit
cycle. We report the average over all observed limit cycles. Limit cycles in
small networks tend to have greater fluctuation (although the agreement is
still >60%), whereas the agreement in larger networks stabilizes above 85%.

Fig. 7. The fraction of species present in steady states (Upper) and limit
cycles (Lower). Greater values for larger networks indicate that large source
pools are capable of sustaining disproportionately larger communities. We
attribute the increased percentage of present nodes in small network limit
cycles to minimum complexity requirements for limit cycles.

Fig. 8. The ratio of present plants to present pollinators in steady states for
positive edge weight = 1. The ratio scales with the source pool composition.
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locally extinct species to recolonize communities and the effect of
global extinctions on the stability of communities. Local extinction
of a species can be represented in the model by temporarily re-
moving a species from a stable community (attractor) and allowing
it to potentially recolonize from the regional species pool. We
hypothesize that although a return to the original stable commu-
nity would be possible, local extinction of speciesmay nevertheless
force the community into another stable state. Global extinction,
on the other hand, would be expected to be a stronger perturba-
tion, with a higher chance to force the community into a very
different stable state and a greater likelihood of catastrophic
failure in which all species go extinct. We can similarly explore the
effect of introducing novel species to communities.
Many advances in the study of mutualisms have originated

from network approaches, especially the understanding of in-
teraction complexity (e.g., refs. 18, 31–35, 40, 61, and 62). As
quantitative information becomes more available, more specific
network models, such as asynchronous Boolean and continuous/
Boolean hybrid models, may offer additional insight (60–65). We
anticipate that this unique approach to modeling mutualistic
communities will also be applied to a range of other ecologi-
cal questions.

Materials and Methods
Formation of Plant–Pollinator Interaction Networks. In the language of net-
work theory, each species is a node in the plant–pollinator interaction net-
work, and each plant–pollinator interaction is an edge between two nodes.
However, we use the term “species” rather than “node” and “interaction”
rather than “edge” when we discuss the plant–pollinator interaction net-
work, to clearly distinguish it from the state transition network (see
next section).

An interaction between plant species A and pollinator species Bmeans that
if both are present in an ecosystem, B will attempt to feed on A, and Amay or
may not be pollinated during the process. The network is bipartite: Direct
interactions never exist between two plants or two pollinators. The proba-
bility of a plant interacting with k pollinators (and vice versa) is assigned from
an exponentially cut off power law, as is commonly observed in real eco-
systems, with properties drawn from the literature (56). As in some other
studies (31, 33, 34), we assign trait values to the species to characterize the
beneficial or detrimental nature of their interactions. When trait values are
used to determine whether interactions exist, recapitulation of real network
properties is possible only if multiple dimensions of characteristics are con-
sidered (31). Here, we choose an alternative route and impose the inter-
actions by following a known degree distribution and use a single
characteristic value to categorize interactions into three types.

Ecologically, a plant–pollinator interaction may be (a) beneficial to both
species or (b) beneficial to one and detrimental to the other. The categori-
zation depends upon the length of the pollinator’s proboscis (λpo) compared
with the plant’s nectar depth (λpl). The λ-values are drawn from skew normal
distributions reported in the literature (37).

The λ-values determine the effect of each interaction on the participating
species:

(i) If λpo and λpl are roughly equal (here defined as having percentage of
difference ≤10), the interaction is beneficial to each species: The pol-
linator can effectively draw sustenance from the plant, and the plant
is pollinated in the process.

(ii) If λpl > λpo, the plant is pollinated but the pollinator fails to draw any
sustenance from it. The interaction is beneficial for the plant, but
detrimental to the pollinator (because it spends time and energy in
an unsuccessful attempt to feed from the plant).

(iii) If λpl < λpo, the plant is not pollinated, but the pollinator is able to
feed on it. The interaction is detrimental for the plant (which loses
nectar and time available for other pollinators), but beneficial for
the pollinator.

A beneficial (detrimental) interaction is assigned a positive (negative)
weight. Interaction asymmetry is a fundamental feature of mutualistic in-
teraction networks, and thus these networks are best viewed in terms of
directed interactions, because assigning two weights to a single undirected
edge is ambiguous (43). In this framework, an interaction A → B (B → A)
corresponds to the influence of A on B (B on A). Each interaction has only
one weight, and the directionality is clear.

To completely describe an interaction network, it is sufficient to consider
only the species, their interactions, and the effect of those interactions (the
interaction weights).

Community Assembly on the State Transition Network. In this section we de-
scribe methods for simulating population dynamics on the interaction net-
works described above.Ourmethodmakes two simplifying assumptions. First,
thepopulationofeach speciesmaybeconsideredeitherpresentorabsent (i.e.,
aboveorbelowa threshold value). InBooleanmodels, thepresenceor absence
of anode (here, a species) is identifiedasONorOFFor equivalentlywithbinary
values 1 and 0. Second, we may capture salient properties of the network
dynamics within the framework of discrete advances in time. These properties
are common assumptions that characterize the synchronous Boolean family
of discrete dynamic network models (45, 46).

Because each species is categorized as present or absent for each time step,
an interaction networkwith n species has 2n possible configurations.We refer
to each of these configurations as a “state” of the interaction network. Each
state corresponds to a unique community composition: the set of species that
are present and the interactions between them. The state of the network
varies as time steps are taken. Every species that is present (absent) at time t
attempts to persist (invade) as the community transitions to time t + 1; if it is
successful (unsuccessful), it will be present (absent) at time t + 1.

The state of each species at time t + 1 is determined by the total influence
of its active interactions at time t (an interaction is considered active at time
t if its source species is present at time t). Quantitatively, for a species to be
present at time t + 1 we require the sum of the weights of active incoming
interactions to be above a threshold, T, at time t:

Siðtþ 1Þ ¼
�present; if : ∑

j
SjðtÞEðj; iÞ≥T

absent;otherwise:

In the above, SiðtÞ is the state (present = ON = 1; absent = OFF = 0) of node i
at time t, and Eðj; iÞ is the weight of the interaction from node j to node i
(nonexistent interactions have weight 0 by definition). In this report, we use
T = 1, which requires the interactions of a species to be a net positive for it to
successfully colonize or persist in the system. This is an obvious and common
choice for T, although some studies allow for a third outcome when
Siðt þ 1Þ ¼ 0; wherein the species retains its state from SiðtÞ; (e.g., ref. 58).
Our choice to explicitly require a net positive influence to maintain a species’
presence serves to remove any ambiguity in the strength of any observed
attractors. Negative interactions are assigned a weight of −1, and the pos-
itive interaction weight is systematically varied from 1 to 4. Positive in-
teraction weights of +1 effectively force a node to have more active positive
incoming interactions than active negative incoming interactions to exist as
present in the network; increasing the value of positive interaction weights
allows a node to exist as present with more active negative interactions.

In addition to its computational simplicity, this framework unambiguously
determines the state of the network at any time t, given an initial config-
uration at time ti. Thus, we are able to map out all possible trajectories of
community assembly for any interaction network. This second network
consists of the states of the interaction network (as nodes) and their tran-
sitions (as edges) and is referred to as the “state transition network.” Every
possible community assembly trajectory corresponds to a directed walk on
the state transition network. To illustrate the relationship between the in-
teraction network and the state transition network in our assembly model,
we show a highly simplified interaction network (source pool of species and
their interactions) in Fig. 1 and the corresponding state transition network
(all possible trajectories of species abundances) in Fig. 2.

Each node in the state transition network has one outgoing edge (e.g., Fig.
2). Nodes without an incoming edge can be only starting nodes of any di-
rected walk on the state transition network (e.g., top row in Fig. 2). Nodes
with an outgoing edge directed to itself (e.g., 11101 → 11101 in Fig. 2) are
SSs of the system (i.e., stable communities): If the species reach this config-
uration, no further absent/present or present/absent transitions will be ob-
served. All other nodes have one incoming edge and do not form a loop
with their outgoing edge. These states may exist in a LC (e.g., 11100↔ 00001
in Fig. 2) and are otherwise classified as transient.

Simulations. We describe the population dynamics of an interaction network
bydetermining its state transitionnetwork.Weinvestigatednetworks ranging
in size from10 to 100 species,withboth equal and slightly unequal numbers of
plants and pollinators. Because the influence of a positive plant–pollinator
interaction is poorly understood, we repeated all analyses with the value of
a positive edge incremented between 1 and 4. To characterize model fea-
tures, we generated a series of interaction network ensembles. Each ensem-
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ble consists of 1,000 interaction networks with a fixed network size (i.e., the
size of the species pool) and composition (i.e., the distribution of plants and
pollinators); the degree distribution and characteristic lengths vary between
networks and are obtained from the distributions as described above.

Due to the size of the state transition networks (a single 100-species in-
teraction network has 2100 states), we implemented a Monte Carlo method
to probe the state space of the state transition networks (66). Monte Carlo
methods are ideally suited for determining an average property (e.g., the
number of time steps required to advance to an attractor), but are less ef-
fective when determining a cumulative property (e.g., the total number of

attractors in a state transition network). For a fixed Monte Carlo sample size,
this method results in an increasing probability of undercounting as the
state space grows. This method does not change any of our qualitative
results, but given a complete characterization of the state transition net-
works, we expect the curves in Fig. 3 to increase more rapidly than is shown.
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